Abstract
AbstractStaphylococcus aureus is an important cause of chronic infections resulting from the failure of the host to eliminate the pathogen. Effective S. aureus clearance requires CD4+ T cell-mediated immunity. We previously showed that myeloid-derived suppressor cells (MDSC) expand during staphylococcal infections and support infection chronicity by inhibiting CD4+ T cell responses. The aim of this study was to elucidate the mechanisms underlying the suppressive effect exerted by MDSC on CD4+ T cells during chronic S. aureus infection. It is well known that activated CD4+ T cells undergo metabolic reprogramming from oxidative metabolism to aerobic glycolysis to meet their increased bioenergetic requirements. In this process, pyruvate is largely transformed into lactate by lactate dehydrogenase with the concomitant regeneration of NAD+, which is necessary for continued glycolysis. The by-product lactate needs to be excreted to maintain the glycolytic flux. Using SCENITH (single-cell energetic metabolism by profiling translation inhibition), we demonstrated here that MDSC inhibit CD4+ T cell responses by interfering with their metabolic activity. MDSC are highly glycolytic and excrete large amount of lactate in the local environment that alters the transmembrane concentration gradient and prevent removal of lactate by activated CD4+ T. Accumulation of endogenous lactate impedes the regeneration of NAD+, inhibit NAD-dependent glycolytic enzymes and stop glycolysis. Together, the results of this study have uncovered a role for metabolism on MDSC suppression of CD4+ T cell responses. Thus, reestablishment of their metabolic activity may represent a mean to improve the functionality of CD4+ T cells during chronic S. aureus infection.
Funder
This work was supported by internal funding provided by the Helmholtz Centre for Infection Research
Helmholtz-Zentrum für Infektionsforschung GmbH (HZI)
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献