Exploring oak processionary caterpillar induced lepidopterism (Part 1): unveiling molecular insights through transcriptomics and proteomics

Author:

Seldeslachts Andrea,Maurstad Marius F.,Øyen Jan Philip,Undheim Eivind Andreas Baste,Peigneur Steve,Tytgat JanORCID

Abstract

AbstractLepidopterism, a skin inflammation condition caused by direct or airborne exposure to irritating hairs (setae) from processionary caterpillars, is becoming a significant public health concern. Recent outbreaks of the oak processionary caterpillar (Thaumetopoea processionea) have caused noteworthy health and economic consequences, with a rising frequency expected in the future, exacerbated by global warming promoting the survival of the caterpillar. Current medical treatments focus on symptom relief due to the lack of an effective therapy. While the source is known, understanding the precise causes of symptoms remain incomplete understood. In this study, we employed an advanced method to extract venom from the setae and identify the venom components through high-quality de novo transcriptomics, venom proteomics, and bioinformatic analysis. A total of 171 venom components were identified, including allergens, odorant binding proteins, small peptides, enzymes, enzyme inhibitors, and chitin biosynthesis products, potentially responsible for inflammatory and allergic reactions. This work presents the first comprehensive proteotranscriptomic database of T. processionea, contributing to understanding the complexity of lepidopterism. Furthermore, these findings hold promise for advancing therapeutic approaches to mitigate the global health impact of T. processionea and related caterpillars.

Funder

Fonds Wetenschappelijk Onderzoek

European Cooperation in Science and Technology

Norwegian Research Council

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3