UCHL3 induces radiation resistance and acquisition of mesenchymal phenotypes by deubiquitinating POLD4 in glioma stem cells
-
Published:2024-06-03
Issue:1
Volume:81
Page:
-
ISSN:1420-682X
-
Container-title:Cellular and Molecular Life Sciences
-
language:en
-
Short-container-title:Cell. Mol. Life Sci.
Author:
Fan Ligang, You Hongtao, Jiang Xiao, Niu Yixuan, Chen Zhengxin, Wang Huibo, Xu Yuan, Zhou Peng, Wei Li, Jiang Tianwei, Deng Danni, Xue Lian, Peng Ya, Xing Wei, Shao NaiyuanORCID
Abstract
Abstract
Background
The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive.
Method
Expression and prognosis of the POLD family were analyzed in TCGA, the Chinese Glioma Genome Atlas (CGGA) and GEO datasets. Tumorsphere formation and in vitro limiting dilution assay were performed to investigate the effect of UCHL3-POLD4 on GSC self-renewal. Apoptosis, TUNEL, cell cycle phase distribution, modification of the Single Cell Gel Electrophoresis (Comet), γ-H2AX immunofluorescence, and colony formation assays were conducted to evaluate the influence of UCHL3-POLD4 on GSC in ionizing radiation. Coimmunoprecipitation and GST pull-down assays were performed to identify POLD4 protein interactors. In vivo, intracranial xenograft mouse models were used to investigate the molecular effect of UCHL3, POLD4 or TCID on GCS.
Result
We determined that POLD4 was considerably upregulated in MES-GSCs and was associated with a meagre prognosis. Ubiquitin carboxyl terminal hydrolase L3 (UCHL3), a DUB enzyme in the UCH protease family, is a bona fide deubiquitinase of POLD4 in GSCs. UCHL3 interacted with, depolyubiquitinated, and stabilized POLD4. Both in vitro and in vivo assays indicated that targeted depletion of the UCHL3-POLD4 axis reduced GSC self-renewal and tumorigenic capacity and resistance to IR treatment by impairing homologous recombination (HR) and nonhomologous end joining (NHEJ). Additionally, we proved that the UCHL3 inhibitor TCID induced POLD4 degradation and can significantly enhance the therapeutic effect of IR in a gsc-derived in situ xenograft model.
Conclusion
These findings reveal a new signaling axis for GSC PMT regulation and highlight UCHL3-POLD4 as a potential therapeutic target in GBM. TCID, targeted for reducing the deubiquitinase activity of UCHL3, exhibited significant synergy against MES GSCs in combination with radiation.
Funder
Changzhou Science and Technology Project Funding from Young Talent Development Plan of Changzhou Health Commission the Postdoctoral Research Fund of Jiangsu Province the Changzhou Sci & Tech Program Natural Science Foundation of China Changzhou Clinical Medical Center National Natural Science Foundation of China General Program
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Ladomersky E, Zhai L, Lenzen A, Lauing KL, Qian J, Scholtens DM, Gritsina G, Sun X, Liu Y, Yu F et al (2018) IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. Clin Cancer Res 24(11):2559–2573 2. Wenger A, Ferreyra Vega S, Kling T, Bontell TO, Jakola AS, Caren H (2019) Intratumor DNA methylation heterogeneity in glioblastoma: implications for DNA methylation-based classification. Neuro Oncol 21(5):616–627 3. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173 4. Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L et al (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A 110(21):8644–8649 5. Kim SH, Ezhilarasan R, Phillips E, Gallego-Perez D, Sparks A, Taylor D, Ladner K, Furuta T, Sabit H, Chhipa R et al (2016) Serine/threonine kinase MLK4 determines mesenchymal identity in glioma stem cells in an NF-kappaB-dependent manner. Cancer Cell 29(2):201–213
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Role of UCHL3 in health and disease;Biochemical and Biophysical Research Communications;2024-11
|
|