Behind the pathology of macrophage-associated demyelination in inflammatory neuropathies: demyelinating Schwann cells

Author:

Park Hwan TaeORCID,Kim Young Hee,Lee Kyung Eun,Kim Jong Kuk

Abstract

AbstractIn inflammatory peripheral demyelinating disorders, demyelination represents segmental demyelination in which the myelin sheath of a myelinating Schwann cell (SC) is completely removed by macrophages or a partial myelin degeneration in the paranode occurring due to autoantibodies attacking the node/paranode. For the segmental demyelination from living myelin-forming SCs, macrophages infiltrate within the endoneurium and insinuate between myelin lamellae and the cytoplasm of SCs, and the myelin is then removed via phagocytosis. During the macrophage invasion into the SC cytoplasm from the node of Ranvier and internodal areas, the attacked SCs do not remain quiescent but transdifferentiate into inflammatory demyelinating SCs (iDSCs), which exhibit unique demyelination pathologies, such as myelin uncompaction from Schmidt-Lanterman incisures with myelin lamellae degeneration. The longitudinal extension of this self-myelin clearance process of iDSCs into the nodal region is associated with the degeneration of nodal microvilli and paranodal loops, which provides a potential locus for macrophage infiltration. In addition to the nodal intrusion, macrophages appear to be able to invade fenestrated internodal plasma membrane or the degenerated outer mesaxon of iDSC. These SC demyelination morphologies indicate that the SC reprogramming to iDSCs may be a prerequisite for macrophage-mediated inflammatory demyelination. In contrast, paranodal demyelination caused by autoantibodies to nodal/paranodal antigens does not result in iDSC-dependent macrophage infiltration and subsequent segmental demyelination. In the context of inflammatory demyelination, the novel perspective of iDSCs provides an important viewpoint to understand the pathophysiology of demyelinating peripheral neuropathies and establish diagnostic and therapeutic strategies.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3