Glucose and HODEs regulate Aspergillus ochraceus quorum sensing through the GprC-AcyA pathway

Author:

Gao Jing,Liu Huiqing,Jin Yuxin,Luo Yunbo,Huang Kunlun,Liang ZhihongORCID

Abstract

AbstractAspergillus ochraceus is the traditional ochratoxin A (OTA)-producing fungus with density-dependent behaviors, which is known as quorum sensing (QS) that is mediated by signaling molecules. Individual cells trend to adapt environmental changes in a “whole” flora through communications, allowing fungus to occupy an important ecological niche. Signals perception, transmission, and feedback are all rely on a signal network that constituted by membrane receptors and intracellular effectors. However, the interference of density information in signal transduction, which regulates most life activities of Aspergillus, have yet to be elucidated. Here we show that the G protein-coupled receptor (GPCR) to cAMP pathway is responsible for transmitting density information, and regulates the key point in life cycle of A. ochraceus. Firstly, the quorum sensing phenomenon of A. ochraceus is confirmed, and identified the density threshold is 103 spores/mL, which represents the low density that produces the most OTA in a series quorum density. Moreover, the GprC that classified as sugar sensor, and intracellular adenylate cyclase (AcyA)-cAMP-PKA pathway that in response to ligands glucose and HODEs are verified. Furthermore, GprC and AcyA regulate the primary metabolism as well as secondary metabolism, and further affects the growth of A. ochraceus during the entire life cycle. These studies highlight a crucial G protein signaling pathway for cell communication that is mediated by carbohydrate and oxylipins, and clarified a comprehensive effect of fungal development, which include the direct gene regulation and indirect substrate or energy supply. Our work revealed more signal molecules that mediated density information and connected effects on important adaptive behaviors of Aspergillus ochraceus, hoping to achieve comprehensive prevention and control of mycotoxin pollution from interrupting cell communication.

Funder

National Natural Science Foundation of China

Graduate Independent Innovation Research Foundation of China Agricultural University

Publisher

Springer Science and Business Media LLC

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3