Abstract
AbstractAn imbalance of human mesenchymal stem cells (hMSCs) adipogenic and osteogenic differentiation is crucial in the pathogenesis of osteoporosis, and elucidation of the underlying mechanism is urgently needed. APPL1, an adaptor protein of the adiponectin receptor, was recently shown to be closely related to bone mass. However, the role of APPL1 in the imbalance of hMSC differentiation in osteoporosis is unclear. Therefore, we aimed to explore the mechanisms by which APPL1 alters hMSCs adipogenic differentiation in osteoporosis. Here, we found that APPL1 expression was downregulated in elderly patients with osteoporosis and in mouse osteoporosis model. APPL1 negatively regulated hMSC adipogenic differentiation in vivo and in vitro. Mechanistically, by enhancing ubiquitination-mediated Myoferlin degradation, downregulated APPL1 expression increased the risk of lysosome dysfunction during hMSCs adipogenic differentiation. Lysosomal dysfunction inhibited autophagy flux by suppressing autophagosome degradation and promoted hMSC differentiation towards the adipocyte lineage. Our findings suggest that APPL1/Myoferlin downregulation promoted hMSCs adipogenic differentiation by inhibiting autophagy flux, further impairing the balance of hMSCs adipogenic and osteogenic differentiation in osteoporosis; the APPL1/ Myoferlin axis may be a promising diagnostic and therapeutic target for osteoporosis.
Funder
National Natural Science Foundation of China
Guangdong Natural Science Foundation
Shenzhen Science and Technology Program
Futian Healthcare Research Project
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献