ACAD10 and ACAD11 allow entry of 4-hydroxy fatty acids into β-oxidation

Author:

Paquay Stéphanie,Duraffourd Julia,Bury Marina,Heremans Isaac P.,Caligiore Francesco,Gerin Isabelle,Stroobant Vincent,Jacobs Jean,Pinon Aymeric,Graff Julie,Vertommen Didier,Van Schaftingen Emile,Dewulf Joseph P.,Bommer Guido T.ORCID

Abstract

AbstractHydroxylated fatty acids are important intermediates in lipid metabolism and signaling. Surprisingly, the metabolism of 4-hydroxy fatty acids remains largely unexplored. We found that both ACAD10 and ACAD11 unite two enzymatic activities to introduce these metabolites into mitochondrial and peroxisomal β-oxidation, respectively. First, they phosphorylate 4-hydroxyacyl-CoAs via a kinase domain, followed by an elimination of the phosphate to form enoyl-CoAs catalyzed by an acyl-CoA dehydrogenase (ACAD) domain. Studies in knockout cell lines revealed that ACAD10 preferentially metabolizes shorter chain 4-hydroxy fatty acids than ACAD11 (i.e. 6 carbons versus 10 carbons). Yet, recombinant proteins showed comparable activity on the corresponding 4-hydroxyacyl-CoAs. This suggests that the localization of ACAD10 and ACAD11 to mitochondria and peroxisomes, respectively, might influence their physiological substrate spectrum. Interestingly, we observed that ACAD10 is cleaved internally during its maturation generating a C-terminal part consisting of the ACAD domain, and an N-terminal part comprising the kinase domain and a haloacid dehalogenase (HAD) domain. HAD domains often exhibit phosphatase activity, but negligible activity was observed in the case of ACAD10. Yet, inactivation of a presumptive key residue in this domain significantly increased the kinase activity, suggesting that this domain might have acquired a regulatory function to prevent accumulation of the phospho-hydroxyacyl-CoA intermediate. Taken together, our work reveals that 4-hydroxy fatty acids enter mitochondrial and peroxisomal fatty acid β-oxidation via two enzymes with an overlapping substrate repertoire.

Funder

European Research Council

Fonds De La Recherche Scientifique - FNRS

Fondation Médicale Reine Elisabeth

Mizutani Foundation for Glycoscience

Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3