The senescent mesothelial matrix accentuates colonization by ovarian cancer cells

Author:

Thapa Bharat Vivan,Banerjee Mallar,Glimm Tilmann,Saini Deepak K.,Bhat RamrayORCID

Abstract

AbstractOvarian cancer is amongst the most morbid of gynecological malignancies due to its diagnosis at an advanced stage, a transcoelomic mode of metastasis, and rapid transition to chemotherapeutic resistance. Like all other malignancies, the progression of ovarian cancer may be interpreted as an emergent outcome of the conflict between metastasizing cancer cells and the natural defense mounted by microenvironmental barriers to such migration. Here, we asked whether senescence in coelom-lining mesothelia, brought about by drug exposure, affects their interaction with disseminated ovarian cancer cells. We observed that cancer cells adhered faster on senescent human and murine mesothelial monolayers than on non-senescent controls. Time-lapse epifluorescence microscopy showed that mesothelial cells were cleared by a host of cancer cells that surrounded the former, even under sub-confluent conditions. A multiscale computational model predicted that such colocalized mesothelial clearance under sub-confluence requires greater adhesion between cancer cells and senescent mesothelia. Consistent with the prediction, we observed that senescent mesothelia expressed an extracellular matrix with higher levels of fibronectin, laminins and hyaluronan than non-senescent controls. On senescent matrix, cancer cells adhered more efficiently, spread better, and moved faster and persistently, aiding the spread of cancer. Inhibition assays using RGD cyclopeptides suggested the adhesion was predominantly contributed by fibronectin and laminin. These findings led us to propose that the senescence-associated matrisomal phenotype of peritoneal barriers enhances the colonization of invading ovarian cancer cells contributing to the metastatic burden associated with the disease.

Funder

The Wellcome Trust DBT India Alliance

John Templeton Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3