Interleukin 4 improved adipose-derived stem cells engraftment via interacting with fibro/adipogenic progenitors in dystrophic mice

Author:

Li Huan,Lin Jinfu,Wang Liang,He Ruojie,Li Jing,Chen Menglong,Zhang Weixi,Zhang ChengORCID

Abstract

AbstractAdipose-derived stem cells (ADSC) therapy shows promise as an effective treatment for dystrophinopathy. Fibro-/adipogenic progenitors (FAPs) play an essential role in the myogenesis of muscle satellite cells and contribute to muscle fibrosis and adipocyte infiltration. The interleukin 4 (IL-4) pathway acts as a switch that regulates the functions of FAPs. The interaction between FAPs and engrafted cells remains unclear. In this study, we used a co-culture system to investigate possible crosstalk between the FAPs of dystrophic mice and ADSC overexpressing IL4 (IL4-ADSC) and control ADSC. Systemic transplantation of IL4-ADSC and control ADSC in dystrophic mice was conducted for 16 weeks, after which motor function and molecular improvements were evaluated. Overexpression of IL4 in ADSC significantly promoted myogenesis in vitro, increasing the expression of Pax7, Myogenin, and MyHC. Co-culture indicated that although myoblasts derived from control ADSC promoted adipogenic and fibrogenic differentiation of FAPs, FAPs did not significantly affect myogenesis of ADSC-derived myoblasts. However, overexpression of IL4 in ADSC inhibited their myotube-dependent promotion of FAPs differentiation on the one hand and promoted FAPs to enhance myogenesis on the other. Dystrophic mice administered with IL4-ADSC-derived myoblasts displayed significantly better motor ability, more engrafted cells showing dystrophin expression, and less muscle fibrosis, intramuscular adipocytes, and macrophage infiltration than mice administered control-ADSC-derived myoblasts. In conclusion, IL4 activation enhanced the therapeutic potential of ADSC transplantation in dystrophic mice, possibly by improving the myogenesis of IL4-ADSC and altering the crosstalk between engrafted stem cells and resident FAPs.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3