Novel X-ray image noise reduction technology reduces patient radiation dose while maintaining image quality in coronary angiography

Author:

ten Cate T.,van Wely M.,Gehlmann H.,Mauti M.,Camaro C.,Reifart N.,Suryapranata H.,de Boer M.J.

Abstract

Abstract Aims The consequences of high radiation dose for patient and staff demand constant improvements in X-ray dose reduction technology. This study assessed non-inferiority of image quality and quantified patient dose reduction in interventional cardiology for an anatomy-specific optimised cine acquisition chain combined with advanced real-time image noise reduction algorithms referred to as ‘study cine’, compared with conventional angiography. Methods Fifty patients underwent two coronary angiographic acquisitions: one with advanced image processing and optimised exposure system settings to enable dose reduction (study cine) and one with standard image processing and exposure settings (reference cine). The image sets of 39 patients (18 females, 21 males) were rated by six experienced independent reviewers, blinded to the patient and image characteristics. The image pairs were randomly presented. Overall 85 % of the study cine images were rated as better or equal quality compared with the reference cine (95 % CI 0.81–0.90). The median dose area product per frame decreased from 55 to 26 mGy.cm2/frame (53 % reduction, p < 0.001). Conclusion This study demonstrates that the novel X-ray imaging technology provides non-inferior image quality compared with conventional angiographic systems for interventional cardiology with a 53 % patient dose reduction.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3