Uncovering inbreeding, small populations, and strong genetic isolation in an Australian threatened frog, Litoria littlejohni

Author:

Stock Sarah E.ORCID,Klop-Toker KayaORCID,Wallace SamanthaORCID,Kelly OliverORCID,Callen AlexORCID,Seeto RebeccaORCID,Mahony Stephen V.ORCID,Hayward Matt W.ORCID,Mahony Michael J.ORCID

Abstract

AbstractThe status of many amphibian populations remains unclear due to undetected declines driven by disease and difficulties in obtaining accurate population estimates. Here, we used genome complexity reduction-based sequencing technology to study the poorly understood Littlejohn’s treefrog, Litoria littlejohni across its fragmented distribution in eastern Australia. We detected five identifiable genetic clusters, with moderate to strong genetic isolation. At a regional scale, population isolation was likely driven by population crashes, resulting in small populations impacted by founder effects. Moderate genetic isolation was detected among populations on the Woronora Plateau despite short distances between population clusters. Evidence of recent declines was apparent in three populations that had very small effective population size, reduced genetic diversity and high inbreeding values. The rates of inbreeding detected in these populations combined with their small size leave these populations at elevated risk of extinction. The Cordeaux Cluster was identified as the most robust population as it was the largest and most genetically diverse. This study exemplifies the value of employing genetic methods to study rare, cryptic species. Despite low recapture rates using traditional capture-recapture demographic methods, we were able to derive population estimates, describe patterns of gene flow, and demonstrate the need for urgent conservation management.

Funder

The University of Newcastle

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3