Conservation genetics of relict tropical species of Magnolia (section Macrophylla)

Author:

Chávez-Cortázar Angélica,Oyama KenORCID,Ochoa-Zavala MariedORCID,Mata-Rosas MartínORCID,Veltjen EmilyORCID,Samain Marie-StéphanieORCID,Quesada Mauricio

Abstract

AbstractSpecial conservation efforts should be made for relict species, as they usually have small population sizes and restricted distributions, placing them in critical extinction risk. To achieve conservation, information about genetic diversity distribution is needed. Here, using nine nuclear microsatellites, we analyzed 23 populations of five recently described species of Magnolia distributed in Mexico, which were previously assigned to Magnolia dealbata. We aimed to determine the level of genetic diversity and the distribution of genetic variation and proposed conservation measures. Compared to other endemic and relict species, we found a moderate level of genetic diversity in most populations; however, we identified two populations with no genetic variation. Additionally, we found evidence of positive values of inbreeding likely due to geitonogamy. We found a strong population structure, low effective population size, and no evidence of bottlenecks. Patterns of genetic differentiation did not support the morphological distinction of five species, so we hypothesized that the gene pools may instead represent well-differentiated populations of a single species. We argue that the pattern of genetic differentiation is explained by the natural fragmentation of the cloud forests after glaciation events, and the effects of genetic drift in small populations poorly connected by gene flow. Despite the moderate levels of genetic diversity, special attention is needed to guarantee conservation, with emphasis on the populations in the central region of the country as well as the valuable populations identified in the southwestern region.

Funder

CONACYT

INECOL

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3