Bidirectional hybridisation and introgression between introduced European brown hare, Lepus europaeus and the endemic Irish hare, L. timidus hibernicus

Author:

Reid NeilORCID,Hughes Maria F.ORCID,Hynes Rosaleen A.,Montgomery W. IanORCID,Prodöhl Paulo A.ORCID

Abstract

AbstractIntroduced non-native species can threaten native species through interspecific hybridisation and genetic introgression. We assessed the prevalence of hybridisation and introgression between introduced European brown hare, Lepus europaeus, and the endemic Irish hare, L. timidus hibernicus. Roadkill hares (n = 56) were sequenced for a 379bp section of the mitochondrial DNA D-loop and a 474bp segment of the nuclear transferrin (Tf) gene. A species-specific indel in the transferrin gene was present in L.t. hibernicus and absent in L. europaeus. Excluding three hares from which molecular data could not be recovered, 28 hares (53%) were native L.t. hibernicus, 7 (13%) were non-native L. europaeus and 18 (34%) were hybrids; of which 5 (28%) were first generation (F1) involving bidirectional crosses with mismatched nuclear and mtDNA (3 ♂ europaeus x ♀ hibernicus and 2 ♂ hibernicus x ♀ europaeus). Mixed nuclear transferrin sequences suggested 13 (72%) of hybrids were at least 2nd generation (F2) with 9 (69%) possessing L.t. hibernicus and 4 (31%) L. europaeus mtDNA (the latter indicative of hybrid backcrossing with the non-native). The prevalence of hybridisation at similar mountain-brown hare contact zones throughout Europe is notably lower (4–16%) and typically unidirectional (♂ europaeus x ♀ timidus). A high prevalence of bidirectional hybridisation and introgression (in association with projected climate change) may favour the introduced species over the native. Genetic surveillance and population monitoring are needed to further explore the potential conservation implications of European brown hare in Ireland.

Funder

Northern Ireland Environment Agency

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3