Past, present, future: tracking and simulating genetic differentiation over time in a closed metapopulation system

Author:

Kunz FlorianORCID,Kohnen AnnetteORCID,Nopp-Mayr UrsulaORCID,Coppes JoyORCID

Abstract

AbstractGenetic differentiation plays an essential role in the assessment of metapopulation systems of conservation concern. Migration rates affect the degree of genetic differentiation between subpopulations, with increasing genetic differentiation leading to increasing extinction risk. Analyses of genetic differentiation repeated over time together with projections into the future are therefore important to inform conservation. We investigated genetic differentiation in a closed metapopulation system of an obligate forest grouse, the Western capercaillie Tetrao urogallus, by comparing microsatellite population structure between a historic and a recent time period. We found an increase in genetic differentiation over a period of approximately 15 years. Making use of forward simulations accounting for population dynamics and genetics from both time periods, we explored future genetic differentiation by implementing scenarios of differing migration rates. Using migration rates derived from the recent dataset, simulations predicted further increase of genetic differentiation by 2050. We then examined effects of two realistic yet hypothetical migration scenarios on genetic differentiation. While isolation of a subpopulation led to overall increased genetic differentiation, the re-establishment of connectivity between two subpopulations maintained genetic differentiation at recent levels. Our results emphasize the importance of maintaining connectivity between subpopulations in order to prevent further genetic differentiation and loss of genetic variation. The simulation set-up we developed is highly adaptable and will aid researchers and conservationists alike in anticipating consequences of conservation strategies for metapopulation systems.

Funder

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3