Landscape genetics identifies barriers to Natterjack toad metapopulation dispersal

Author:

Reyne Marina I.ORCID,Dicks Kara,Flanagan Jason,Nolan Paul,Twining Joshua P.,Aubry Aurélie,Emmerson Mark,Marnell Ferdia,Helyar Sarah,Reid Neil

Abstract

AbstractHabitat fragmentation and loss reduce population size and connectivity, which imperils populations. Functional connectivity is key for species persistence in human-modified landscapes. To inform species conservation management, we investigated spatial genetic structure, gene flow and inferred dispersal between twelve breeding sites of the Natterjack toad (Bufo calamita); regionally Red-Listed as Endangered in Ireland. Spatial genetic structure was determined using both Bayesian and non-Bayesian clustering analysis of 13 polymorphic microsatellite loci genotyping 247 individuals. We tested the influence of geographic distance, climate, habitat, geographical features, and anthropogenic pressure on pairwise genetic distances between breeding sites using Isolation-by-distance and Isolation-by-resistance based on least-cost path and circuit theory models of functional connectivity. There was clear spatial structuring with genetic distances increasing with geographic distance. Gene flow was best explained by Isolation-by-resistance models with coniferous forestry plantations, bog, marsh, moor and heath, scrub, anthropogenic presence (Human Influence Index) and rivers (riparian density) identified as habitats with high resistance to gene flow while metapopulation connectivity was enhanced by coastal habitats (beaches, sand dunes and salt marshes) and coastal grassland. Despite substantial declines in census numbers over the past 15 years and its regional status as Endangered, the Natterjack toad population in Ireland retains high genetic diversity. If declines continue, maintaining habitat connectivity to prevent genetic erosion by management of coastal grasslands, pond construction and assisted migration through translocation will be increasingly important.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3