Landscape genomics reveals signals of climate adaptation and a cryptic lineage in Arthropodium fimbriatum

Author:

Jordan Rebecca,Price Meridy,Harrison Peter A.,Prober Suzanne M.,Vaillancourt René E.,Steane Dorothy

Abstract

AbstractHabitat loss and fragmentation are critical threats to biodiversity. Consequent decreases in population size and connectivity can impact genetic diversity and, thus, future adaptability and resilience to environmental change. Understanding landscape patterns of genetic diversity, including patterns of adaptive variation, can assist in developing conservation strategies that maximise population persistence and adaptability in the face of environmental change. Using a reduced-representation genomic approach, we investigated genetic diversity, structure, and adaptive variation across an aridity gradient in the woodland forb Arthropodium fimbriatum. Moderate levels of genetic diversity (HS = 0.14–0.23) were found in all 13 sampled provenances. Inbreeding varied among provenances (FIS = 0.08–0.42) but was not associated with estimated population size. Four genetic clusters were identified, including one highly differentiated cluster. Higher pairwise FST (0.23–0.42) between the three provenances of this cluster and the remaining 10 provenances (pairwise FST between 10 provenances 0.02–0.32) suggested two highly divergent lineages or potentially a cryptic species. After excluding the three highly differentiated populations, outlier and genotype-environment association analysis identified 275 putatively adaptive loci suggesting genomic signatures of climate adaptation in A. fimbriatum is primarily associated with changes in aridity. Combined, these results suggest that all provenances have conservation value, contributing to the maintenance of genetic diversity and adaptive variation in this species. The uncovering of a potential cryptic taxon highlights the power of genomics approaches in conservation genetics and the importance of understanding the role of landscape variation shaping genetic variation to effectively define conservation management units in an era of rapid biodiversity decline.

Funder

ARC Industrial Transformation Training Centre for Uniquely Australian Foods

Australian Department of Agriculture, Water and Environment, Biodiversity Knowledge project series

Research Fellowship

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3