Admixture and reproductive skew shape the conservation value of ex situ populations of the Critically Endangered eastern black rhino

Author:

Elsner-Gearing FranziskaORCID,Kretzschmar Petra,Shultz Susanne,Pilgrim Mark,Dawson Deborah Ann,Horsburgh Gavin John,Hruby Jírí,Hopper Jane,King Tony,Walton Catherine

Abstract

AbstractSmall populations of endangered species risk losing already eroded genetic diversity, important for adaptive potential, through the effects of genetic drift. The magnitude of drift can be mitigated by maximising the effective population size, as is the goal of genetic management strategies. Different mating systems, specifically those leading to reproductive skew, exacerbate genetic drift by distorting contributions. In the absence of an active management strategy, reproductive skew will have long-term effects on the genetic composition of a population, particularly where admixture is present. Here we examine the contrasting effects of conservation management strategies in two ex situ populations of the Critically Endangered eastern black rhino (Diceros bicornis michaeli), one managed as a semi-wild population in South Africa (SAx), and one managed under a mean-kinship breeding strategy in European zoos. We use molecular data to reconstruct pedigrees for both populations and validate the method using the zoo studbook. Using the reconstructed pedigree and studbook we show there is male sex-specific skew in both populations. However, the zoo’s mean-kinship breeding strategy effectively reduces reproductive skew in comparison to a semi-wild population with little genetic management. We also show that strong male reproductive skew in SAx has resulted in extensive admixture, which may require a re-evaluation of the population’s original intended role in the black rhino meta-population. With a high potential for admixture in many ex situ populations of endangered species, molecular and pedigree data remain vital tools for populations needing to balance drift and selection.

Funder

Natural Environment Research Council

NERC Biomolecular Analysis Facility

Chester Zoo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3