Abstract
AbstractGenome-wide evaluations of genetic diversity and population structure are important for informing management and conservation of trailing-edge populations. North American moose (Alces alces) are declining along portions of the southern edge of their range due to disease, species interactions, and marginal habitat, all of which may be exacerbated by climate change. We employed a genotyping by sequencing (GBS) approach in an effort to collect baseline information on the genetic variation of moose inhabiting the species’ southern range periphery in the contiguous United States. We identified 1920 single nucleotide polymorphisms (SNPs) from 155 moose representing three subspecies from five states: A. a. americana (New Hampshire), A. a. andersoni (Minnesota), and A. a. shirasi (Idaho, Montana, and Wyoming). Molecular analyses supported three geographically isolated clusters, congruent with currently recognized subspecies. Additionally, while moderately low genetic diversity was observed, there was little evidence of inbreeding. Results also indicated > 20% shared ancestry proportions between A. a. shirasi samples from northern Montana and A. a. andersoni samples from Minnesota, indicating a putative hybrid zone warranting further investigation. GBS has proven to be a simple and effective method for genome-wide SNP discovery in moose and provides robust data for informing herd management and conservation priorities. With increasing disease, predation, and climate related pressure on range edge moose populations in the United States, the use of SNP data to identify gene flow between subspecies may prove a powerful tool for moose management and recovery, particularly if hybrid moose are more able to adapt.
Funder
USGS National Climate Adaptation Science Center
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Ecology, Evolution, Behavior and Systematics
Reference87 articles.
1. Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, 2nd edn. Wiley, Hoboken
2. Ba H, Jia B, Wang G et al (2017) Genome-wide SNP discovery and analysis of genetic diversity in farmed Sika deer (Cervus nippon) in northeast China using double-digest restriction site-associated DNA sequencing. G3 Genes Genomes Genet 7:3169–3176. https://doi.org/10.1534/g3.117.300082
3. Bijlsma R, Loeschcke V (2012) Genetic erosion impedes adaptive responses to stressful environments: genetic erosion and adaptive responses. Evol Appl 5:117–129. https://doi.org/10.1111/j.1752-4571.2011.00214.x
4. Blåhed I-M, Ericsson G, Spong G (2019) Noninvasive population assessment of moose (Alces alces) by SNP genotyping of fecal pellets. Eur J Wildl Res 65:96. https://doi.org/10.1007/s10344-019-1337-8
5. Boeskorov GG (1997) Chromosomal differences in moose (Mammalia, Artiodactyla, Alces alces L.). Genetika 33:974–978
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献