Genetic variation of litter meadow species reflects gene flow by hay transfer and mowing with agricultural machines

Author:

Lehmair Theresa AnnaORCID,Pagel EllenORCID,Poschlod PeterORCID,Reisch ChristophORCID

Abstract

AbstractLitter meadows, historically established for litter production, are species-rich and diverse ecosystems. These meadows drastically declined during the last decades along with decreasing litter use in modern livestock housing. The aim of our study was to identify the drivers of genetic variation in litter meadow species. Therefore, we tested whether genetic diversity and differentiation depend on habitat age, landscape structure, habitat quality, and/or population size. We analysed 892 individuals of Angelica sylvestris, Filipendula ulmaria, and Succisa pratensis from 20 litter meadows across the Allgäu in Baden-Württemberg (Germany) using AFLP analyses. All study species showed moderate levels of genetic diversity, while genetic differentiation among populations was low. Neither genetic diversity nor differentiation were clearly driven by habitat age. However, landscape structure, habitat quality as well as population size revealed different impacts on the genetic diversity of our study species. Past and present landscape structures shaped the genetic diversity patterns of A. sylvestris and F. ulmaria. The genetic diversity of F. ulmaria populations was, moreover, influenced by the local habitat quality. S. pratensis populations seemed to be affected only by population size. All explanatory variables represent past as well as present gene flow patterns by anthropogenic land use. Therefore, we assume that genetic diversity and differentiation were shaped by both historical creation of litter meadows via hay transfer and present mowing with agricultural machines. These land use practices caused and still cause gene flow among populations in the declining habitats.

Funder

Bundesanstalt für Landwirtschaft und Ernährung

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3