Clinical evaluation of vertebral body replacement of carbon fiber–reinforced polyetheretherketone in patients with tumor manifestation of the thoracic and lumbar spine

Author:

Schwendner Maximilian,Ille Sebastian,Kirschke Jan S.,Bernhardt Denise,Combs Stephanie E.,Meyer Bernhard,Krieg Sandro M.ORCID

Abstract

Abstract Purpose Radiolucent anterior and posterior implants by carbon fiber–reinforced polyetheretherketone (CFR PEEK) aim to improve treatment of primary and secondary tumors of the spine during the last years. The aim of this study was to evaluate clinical and radiological outcomes after dorsoventral instrumentation using a CFR PEEK implant in a cohort of patients representing clinical reality. Methods A total of 25 patients with tumor manifestation of the thoracic and lumbar spine underwent vertebral body replacement (VBR) using an expandable CFR PEEK implant between January 2021 and January 2022. Patient outcome, complications, and radiographic follow-up were analyzed. Results A consecutive series aged 65.8 ± 14.7 (27.6–91.2) years were treated at 37 vertebrae of tumor manifestation, including two cases (8.0%) of primary tumor as well as 23 cases (92.0%) of spinal metastases. Overall, 26 cages covering a median of 1 level (1–4) were implanted. Duration of surgery was 134 ± 104 (65–576) min, with a blood loss of 792 ± 785 (100–4000) ml. No intraoperative cage revision was required. Surgical complications were reported in three (12.0%) cases including hemothorax in two cases (one intraoperative, one postoperative) and atrophic wound healing disorder in one case. In two cases (8.0%), revision surgery was performed (fracture of the adjacent tumorous vertebrae, progressive construct failure regarding cage subsidence). No implant failure was observed. Conclusion VBR using CFR PEEK cages represents a legitimate surgical strategy which opens a variety of improvements—especially in patients in need of postoperative radiotherapy of the spine and MRI-based follow-up examinations.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3