Artificial Intelligence for Pre-operative Diagnosis of Malignant Thyroid Nodules Based on Sonographic Features and Cytology Category

Author:

Jassal KarishmaORCID,Koohestani Afsanesh,Kiu Andrew,Strong April,Ravintharan Nandhini,Yeung Meei,Grodski Simon,Serpell Jonathan W.,Lee James C.

Abstract

AbstractBackgroundCurrent diagnosis and classification of thyroid nodules are susceptible to subjective factors. Despite widespread use of ultrasonography (USG) and fine needle aspiration cytology (FNAC) to assess thyroid nodules, the interpretation of results is nuanced and requires specialist endocrine surgery input. Using readily available pre-operative data, the aims of this study were to develop artificial intelligence (AI) models to classify nodules into likely benign or malignant and to compare the diagnostic performance of the models.MethodsPatients undergoing surgery for thyroid nodules between 2010 and 2020 were recruited from our institution’s database into training and testing groups. Demographics, serum TSH level, cytology, ultrasonography features and histopathology data were extracted. The training group USG images were re-reviewed by a study radiologist experienced in thyroid USG, who reported the relevant features and supplemented with data extracted from existing reports to reduce sampling bias. Testing group USG features were extracted solely from existing reports to reflect real-life practice of a non-thyroid specialist. We developed four AI models based on classification algorithms (k-Nearest Neighbour, Support Vector Machine, Decision Tree, Naïve Bayes) and evaluated their diagnostic performance of thyroid malignancy.ResultsIn the training group (n = 857), 75% were female and 27% of cases were malignant. The testing group (n = 198) consisted of 77% females and 17% malignant cases. Mean age was 54.7 ± 16.2 years for the training group and 50.1 ± 17.4 years for the testing group. Following validation with the testing group, support vector machine classifier was found to perform best in predicting final histopathology with an accuracy of 89%, sensitivity 89%, specificity 83%, F-score 94% and AUROC 0.86.ConclusionWe have developed a first of its kind, pilot AI model that can accurately predict malignancy in thyroid nodules using USG features, FNAC, demographics and serum TSH. There is potential for a model like this to be used as a decision support tool in under-resourced areas as well as by non-thyroid specialists.

Publisher

Springer Science and Business Media LLC

Subject

Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3