Assessment of Machine Learning Methods to Predict Massive Blood Transfusion in Trauma

Author:

Strickland Matt12,Nguyen Anthony3,Wu Shinyi3,Suen Sze‐Chuan3,Mu Yanda3,Del Rio Cuervo Juan3,Shin Brandon J.1,Kalakuntla Tej1,Ghafil Cameron1,Matsushima Kazuhide14ORCID

Affiliation:

1. Department of Surgery University of Southern California LAC+USC Medical Center (The work was done at LAC+USC Medical Center) Los Angeles CA USA

2. Department of Surgery University of Alberta Edmonton AB Canada

3. Daniel J. Epstein Department of Industrial and Systems Engineering University of Southern California Los Angeles CA USA

4. Division of Acute Care Surgery Department of Surgery University of Southern California 2051 Marengo Street, Inpatient Tower, C5L100 90033 Los Angeles CA USA

Abstract

AbstractBackgroundAccurately predicting which patients are most likely to benefit from massive transfusion protocol (MTP) activation may help patients while saving blood products and limiting cost. The purpose of this study is to explore the use of modern machine learning (ML) methods to develop and validate a model that can accurately predict the need for massive blood transfusion (MBT).MethodsThe institutional trauma registry was used to identify all trauma team activation cases between June 2015 and August 2019. We used an ML framework to explore multiple ML methods including logistic regression with forward and backward selection, logistic regression with lasso and ridge regularization, support vector machines (SVM), decision tree, random forest, naive Bayes, XGBoost, AdaBoost, and neural networks. Each model was then assessed using sensitivity, specificity, positive predictive value, and negative predictive value. Model performance was compared to that of existing scores including the Assessment of Blood Consumption (ABC) and the Revised Assessment of Bleeding and Transfusion (RABT).ResultsA total of 2438 patients were included in the study, with 4.9% receiving MBT. All models besides decision tree and SVM attained an area under the curve (AUC) of above 0.75 (range: 0.75–0.83). Most of the ML models have higher sensitivity (0.55–0.83) than the ABC and RABT score (0.36 and 0.55, respectively) while maintaining comparable specificity (0.75–0.81; ABC 0.80 and RABT 0.83).ConclusionsOur ML models performed better than existing scores. Implementing an ML model in mobile computing devices or electronic health record has the potential to improve the usability.

Funder

University of Southern California

Publisher

Wiley

Subject

Surgery

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3