Evaluation of the input site and characteristics of the antegrade fast pathway based on three-dimensional bi-atrial stimulus-ventricle mapping

Author:

Matsumoto KazuhisaORCID,Tobiume Takeshi,Matsuura Tomomi,Ise Takayuki,Kusunose Kenya,Yamaguchi Koji,Yagi Shusuke,Fukuda Daijyu,Wakatsuki Tetsuzo,Yamada Hirotsugu,Soeki Takeshi,Sata Masataka

Abstract

Abstract Purpose Previous studies examined the right atrial (RA) input site of the antegrade fast pathway (AFp) (AFpI). However, the left atrial (LA) input to the atrioventricular (AV) node has not been extensively evaluated. In this study, we created three-dimensional (3-D) bi-atrial stimulus-ventricle (St-V) maps and analyzed the input site and characteristics of the AFp in both the RA and LA. Methods Forty-four patients diagnosed with atrial fibrillation or WPW syndrome were included in this study. Three-dimensional bi-atrial St-V mapping was performed using an electroanatomical mapping system. Sites exhibiting the minimal St-V interval (MinSt-V) were defined as AFpIs and were classified into seven segments, four in the RA (F, S, M, and I) and three in the LA (M1, M2, and M3). By combining the MinSt-V in the RA and LA, the AFpIs were classified into three types: RA, LA, and bi-atrial (BA) types. The clinical and electrophysiological characteristics were compared. Results AFpIs were most frequently observed at site S in the RA (34%) and M2 in the LA (50%), and the BA type was the most common (57%). AFpIs in the LA were recognized in 75% of the patients. There were no clinical or electrophysiological indicators for predicting AFpI sites. Conclusions Three-dimensional bi-atrial St-V maps could classify AFpIs in both the RA and LA. AFpIs in the LA were frequently recognized. There were no significant clinical or electrophysiological indicators for predicting AFpI sites, and 3-D bi-atrial St-V mapping was the only method to reveal the precise AFp input site.

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3