Abstract
Abstract
Background
Pulse field ablation (PFA) is a novel catheter ablation technology with potential safety benefits due to its tissue selectivity. It has the potential to directly damage or interact with the functionality of cardiac implantable electronic devices (CIEDs) in the form of electromagnetic interference (EMI). The aim of our study was to assess the impact of PFA on CIEDs.
Methods
PFA lesions (45 per CIED) were applied from the Farapulse system to CIEDs (< 5 cm from the lead tip and < 15 cm from the generator). All devices were checked before and after PFA application for proper sensing and pacing functionality as well as for integrity of shock circuits in ICDs using a heart simulator. Moreover, devices were then interrogated for any spontaneous reprogramming, mode switching or other EMI effects.
Results
In total, 44 CIEDs were tested (16 pacemaker, 21 ICDs, 7 CRT-P/D) with 1980 PFA applications. There was no change in device settings, functionality and electrical parameters, and there was no macroscopic damage to the devices. The risk of damage to the electric components or leads on a patient-based analysis is 0/44 (95% CI 0–8%) and on a PFA pulse-based analysis is 0/1980 (95% CI 0–0.2%). Clinically relevant EMI appeared with oversensing and pacing inhibition but not tachycardia detection.
Conclusions
Bipolar PFA appears safe and does not result in damage to CIEDs or leads. Clinically relevant EMI does occur, but appropriate peri-procedural programming may mitigate this. In vivo studies are needed to confirm our findings.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献