Substrate mapping of the left atrium in persistent atrial fibrillation: spatial correlation of localized complex conduction patterns in global charge-density maps to low-voltage areas in 3D contact bipolar voltage maps

Author:

Chierchia Gian-BattistaORCID,Sieira Juan,Vanderper Annelies,Osorio Thiago Guimarães,Bala Gezim,Stroker Erwin,Brugada Pedro,Al Houssari Maysam,Cecchini Federico,Mojica Joerelle,Overeinder Ingrid,Bisignani Antonio,Mitraglia Vincenzo,Boveda Serge,Paparella Gaetano,de Asmundis Carlo

Abstract

Abstract Purpose This study aimed to investigate the spatial relationship between low-voltage areas (LVAs) in bipolar voltage mapping (BVM) and localized complex conduction (LCC)-cores in a global, non-contact, charge-density-based imaging, and mapping system (AcM). Methods Patients with history of index PVI for PsAF and scheduled for a repeat ablation procedure for recurrence of the same arrhythmia were enrolled between August 2018 and February 2020. All patients underwent both substrate mappings of the left atrium (LA) with the CARTO 3D map-ping system and with AcM. Results Ten patients where included in our analysis. All presented with persistency of PVI in all veins at the moment of repeat procedure. There was no linear relationship in BVM maps between SR and CSd (correlation coefficient 0.31 ± 0.15), SR and CSp (0.36 ± 0.12) and CSd and CSp (0.43 ± 0.10). The % overlap of localized irregular activation (LIA), localized rotational activation (LRA) and Focal (F) regions with LVA was lower at 0.2 mV compared to 0.5 mV (4.97 ± 7.39%, 3.27 ± 5.25%, 1.09 ± 1.92% and 12.59 ± 11.81%, 7.8 ± 9.20%, 4.62 ± 5.27%). Sensitivity and specificity are not significantly different when comparing composite maps with different LVA cut-offs. AURC was 0.46, 0.48, and 0.39 for LIA, LRA, and Focal, respectively. Conclusion Due to wave front direction dependency, LVAs mapped with BVM in sinus rhythm and during coronary sinus pacing only partially overlap in patients with PsAF. LCC-cores mapped during PsAF partially co-localize with LVAs.

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3