Abstract
Abstract
Purpose
Thermal damage to the esophagus is a risk from radiofrequency (RF) ablation of the left atrium for the treatment of atrial fibrillation (AF). The most extreme type of thermal injury results in atrio-esophageal fistula (AEF) and a correspondingly high mortality rate. Various strategies for reducing esophageal injury have been developed, including power reduction, esophageal deviation, and esophageal cooling. One method of esophageal cooling involves the direct instillation of cold water or saline into the esophagus during RF ablation. Although this method provides limited heat-extraction capacity, studies of it have suggested potential benefit. We sought to perform a meta-analysis of published studies evaluating the use of esophageal cooling via direct liquid instillation for the reduction of thermal injury during RF ablation.
Methods
We searched PubMed for studies that used esophageal cooling to protect the esophagus from thermal injury during RF ablation. We then performed a meta-analysis using a random effects model to calculate estimated effect size with 95% confidence intervals, with an outcome of esophageal lesions stratified by severity, as determined by post-procedure endoscopy.
Results
A total of 9 studies were identified and reviewed. After excluding preclinical and mathematical model studies, 3 were included in the meta-analysis, totaling 494 patients. Esophageal cooling showed a tendency to shift lesion severity downward, such that total lesions did not show a statistically significant change (OR 0.6, 95% CI 0.15 to 2.38). For high-grade lesions, a significant OR of 0.39 (95% CI 0.17 to 0.89) in favor of esophageal cooling was found, suggesting that esophageal cooling, even with a low-capacity thermal extraction technique, reduces the severity of lesions resulting from RF ablation.
Conclusions
Esophageal cooling reduces the severity of the lesions that may result from RF ablation, even when relatively low heat extraction methods are used, such as the direct instillation of small volumes of cold liquid. Further investigation of this approach is warranted, particularly with higher heat extraction capacity techniques.
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献