Steerable sheath visualizable under 3D electroanatomical mapping facilitates paroxysmal atrial fibrillation ablation with minimal fluoroscopy

Author:

Rajendra AnilORCID,Hunter Tina D.,Morales Gustavo X.,Zei Paul,Boo Lee Ming,Varley Allyson,Osorio Jose

Abstract

Abstract Background Advances in technology and workflows have facilitated substantial reductions in fluoroscopy utilization and procedure times for atrial fibrillation (AF) ablations. A recently available steerable sheath, visualizable on a 3D electroanatomical map (EAM), may further simplify low/zero fluoroscopy ablation workflows by facilitating understanding of the relative positions of the catheter and sheath. The objective of this study was to demonstrate feasibility, safety, procedural efficiency, and clinical effectiveness of incorporating the new visualizable sheath into a low-fluoroscopy workflow. Methods Consecutive de novo paroxysmal AF procedures were performed with a porous tip contact force catheter at a high-volume site between January 2018 and May 2019. Procedures performed with and without the VIZIGO™ EAM-visualizable sheath (Vizigo) were compared. All ablations employed the same standardized low-fluoroscopy workflow. Statistical analyses employed stabilized inverse probability of treatment weights (IPTW) to balance cohorts by operator and key patient characteristics. Results Cohorts of 142 Vizigo and 173 non-Vizigo patients were similar at baseline. Use of the Vizigo sheath was associated with approximately 10% improvement in catheter stability (p = 0.0005), 16% reduction in radiofrequency time (p < 0.0001), and 7% fewer ablations that used fluoroscopy (p = 0.0030). There was one cardiac tamponade in each cohort and no deaths, atrioesophageal fistulas, or strokes. Single-procedure freedom from atrial arrhythmia recurrence through 12 months was similar between cohorts (p = 0.9556). Conclusions Use of a 3D EAM-visualizable sheath resulted in improved catheter stability, reduced radiofrequency time, and more procedures performed without fluoroscopy, without compromise to safety or effectiveness.

Funder

Biosense Webster

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3