A single-beat algorithm to discriminate farfield from nearfield bipolar voltage electrograms from the pulmonary veins

Author:

Schlageter VincentORCID,Badertscher PatrickORCID,Luca AdrianORCID,Krisai PhilippORCID,Spies Florian,Kueffer ThomasORCID,Osswald StefanORCID,Vesin Jean-MarcORCID,Kühne MichaelORCID,Sticherling ChristianORCID,Knecht SvenORCID

Abstract

Abstract Background Superimposition of farfield (FF) and nearfield (NF) bipolar voltage electrograms (BVE) complicates the confirmation of pulmonary vein (PV) isolation after catheter ablation of atrial fibrillation. Our aim was to develop an automatic algorithm based on a single-beat analysis to discriminate PV NF from atrial FF BVE from a circular mapping catheter during the cryoballoon PV isolation. Methods During freezing cycles in cryoablation PVI, local NF and distant FF signals were recorded, identified and labelled. BVEs were classified using four different machine learning algorithms based on four frequency domain (high-frequency power (PHF), low-frequency power (PLF), relative high power band, PHF ratio of neighbouring electrodes) and two time domain features (amplitude (Vmax), slew rate). The algorithm-based classification was compared to the true identification gained during the PVI and to a classification by cardiac electrophysiologists. Results We included 335 BVEs from 57 consecutive patients. Using a single feature, PHF with a cut-off at 150 Hz showed the best overall accuracy for classification (79.4%). By combining PHF with Vmax, overall accuracy was improved to 82.7% with a specificity of 89% and a sensitivity of 77%. The overall accuracy was highest for the right inferior PV (96.6%) and lowest for the left superior PV (76.9%). The algorithm showed comparable accuracy to the classification by the EP specialists. Conclusions An automated farfield-nearfield discrimination based on two simple features from a single-beat BVE is feasible with a high specificity and comparable accuracy to the assessment by experienced cardiac electrophysiologists. Graphical Abstract

Funder

Freiwillige Akademische Gesellschaft

University of Basel

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3