Author:
Cuellar-Silva Jose R.,Albrecht Elizabeth M.,Sutton Brad S.
Abstract
Abstract
Background
Fluoroscopy is commonly used during atrial fibrillation (AF) ablation to guide catheter navigation and placement. Technology improvements have significantly reduced fluoroscopy time, and subsequent radiation dose, necessary to perform successful ablations. However, there is still no amount of radiation exposure known to be completely safe. The aim of this manuscript is to describe a detailed zero-fluoroscopy RHYTHMIA HDx workflow for AF ablation.
Methods
This was an observational, single-center experience to describe the technique, acute procedural success, and safety using a novel zero-fluoroscopy workflow with the RHYTHMIA HDx mapping system and intracardiac echocardiography (ICE). Seventy-two consecutive patients undergoing de novo or redo AF ablation were retrospectively analyzed. Venous access was guided with ultrasound. ICE combined with the mapping system’s magnetic tracking and sheath detection was used for precise catheter placement in the coronary sinus, at the transseptal puncture, and in the left atrium. A high-power, short-duration ablation strategy guided by local impedance was used. Pulmonary vein isolation was performed or touched up for all patients with additional lines added at the operator’s discretion.
Results
Using this zero-fluoroscopy workflow, all patients achieved acute isolation with no significant procedure-related complications. Average procedure time was 73.7 ± 16.2 min, which included persistent (58%) and paroxysmal (42%) AF cases, and no procedures required conversion to fluoroscopy.
Conclusions
In this experience, a zero-fluoroscopy workflow using the RHYTHMIA HDx mapping system combined with ICE was feasible and safe for ablation in a heterogenous AF population. This approach, in the appropriate patient population, can eliminate radiation exposure to patients and staff.
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Reference22 articles.
1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–528.
2. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS) The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498.
3. Williams BA, Chamberlain AM, Blankenship JC, Hylek EM, Voyce S. Trends in atrial fibrillation incidence rates within an integrated health care delivery system, 2006 to 2018. JAMA Netw Open. 2020;3(8):e2014874-e.
4. Packer DL, Piccini JP, Monahan KH, Al-Khalidi HR, Silverstein AP, Noseworthy PA, et al. Ablation versus drug therapy for atrial fibrillation in heart failure: results from the CABANA trial. Circulation. 2021;143(14):1377–90.
5. Turagam MK, Musikantow D, Whang W, Koruth JS, Miller MA, Langan M-N, et al. Assessment of catheter ablation or antiarrhythmic drugs for first-line therapy of atrial fibrillation: a meta-analysis of randomized clinical trials. JAMA. 2021;6(6):697–705.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献