Abstract
AbstractWe consider Shor’s quantum factoring algorithm in the setting of noisy quantum gates. Under a generic model of random noise for (controlled) rotation gates, we prove that the algorithm does not factor integers of the form pq when the noise exceeds a vanishingly small level in terms of n—the number of bits of the integer to be factored, where p and q are from a well-defined set of primes of positive density. We further prove that with probability 1 − o(1) over random prime pairs (p, q), Shor’s factoring algorithm does not factor numbers of the form pq, with the same level of random noise present.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献