1. Vapnik V N. The Nature of Statistical Learning Theory. 2nd ed. New York: Springer, 2000
2. Vapnik V, Golowich S E, Smola A. Support vector method for function approximation, regression estimation, and signal processing. In: Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1997. 281–287
3. Osuna E, Freund R, Griosi F. An improved training algorithm for support vector machines. In: Neural Networks for Signal Processing, Amelia Island, FL, USA, 1997. 276–285
4. Burges C J, Scholkopf B. Improving the accuracy and speed of support vector machines. In: Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1997. 375–381
5. Zanni L, Serafini T, Zanghirati G. Parallel software for training large scale support vector machines on multiprocessor systems. J Mach Learn Res, 2006, 7: 1467–1492