Vehicular mobility patterns and their applications to Internet-of-Vehicles: a comprehensive survey

Author:

Cui Qimei,Hu Xingxing,Ni Wei,Tao Xiaofeng,Zhang Ping,Chen Tao,Chen Kwang-Cheng,Haenggi Martin

Abstract

AbstractWith the growing popularity of the Internet-of-Vehicles (IoV), it is of pressing necessity to understand transportation traffic patterns and their impact on wireless network designs and operations. Vehicular mobility patterns and traffic models are the keys to assisting a wide range of analyses and simulations in these applications. This study surveys the status quo of vehicular mobility models, with a focus on recent advances in the last decade. To provide a comprehensive and systematic review, the study first puts forth a requirement-model-application framework in the IoV or general communication and transportation networks. Existing vehicular mobility models are categorized into vehicular distribution, vehicular traffic, and driving behavior models. Such categorization has a particular emphasis on the random patterns of vehicles in space, traffic flow models aligned to road maps, and individuals’ driving behaviors (e.g., lane-changing and car-following). The different categories of the models are applied to various application scenarios, including underlying network connectivity analysis, off-line network optimization, online network functionality, and real-time autonomous driving. Finally, several important research opportunities arise and deserve continuing research efforts, such as holistic designs of deep learning platforms which take the model parameters of vehicular mobility as input features, qualification of vehicular mobility models in terms of representativeness and completeness, and new hybrid models incorporating different categories of vehicular mobility models to improve the representativeness and completeness.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3