Hybrid teaching—learning artificial neural network for city-level electrical load prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
http://link.springer.com/content/pdf/10.1007/s11432-018-9594-9.pdf
Reference5 articles.
1. Wang Z, Srinivasan R S. A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models. Renew Sustain Energy Rev, 2016, 75: 796–808
2. Li K, Hu C, Liu G, et al. Building’s electricity consumption prediction using optimized artificial neural networks and principal component analysis. Energy Buildings, 2015, 108: 106–113
3. Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput-Aided Des, 2011, 43: 303–315
4. Chen X, Yu K, Du W, et al. Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy, 2016, 99: 170–180
5. Pang B, Liu M, Zhang X, et al. A novel approach framework based on statistics for reconstruction and heartrate estimation from PPG with heavy motion artifacts. Sci China Inf Sci, 2018, 61: 022312
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Personalized Edge-Cloud Collaborative High-Fall-risk Monitoring Strategy for Grid Workers at Heights;2023 IEEE Sustainable Power and Energy Conference (iSPEC);2023-11-28
2. Design of a prediction system based on the dynamical feed-forward neural network;Science China Information Sciences;2022-10-11
3. Boosting Black-Box Adversarial Attacks with Meta Learning;2022 41st Chinese Control Conference (CCC);2022-07-25
4. The Practice of MySql in Realizing the Background Data Management of the Hybrid Teaching Management System;Application of Intelligent Systems in Multi-modal Information Analytics;2022
5. Deep belief ensemble network based on MOEA/D for short-term load forecasting;Nonlinear Dynamics;2021-07-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3