Author:
Baron Steffan,Spiliopoulou Myra
Publisher
Springer Berlin Heidelberg
Reference15 articles.
1. N.F. Ayan, A.U. Tansel, and E. Arkun. An Efficient Algorithm To Update Large Itemsets With Early Pruning. In Proc. of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 287–291, San Diego, CA, USA, August 1999. ACM.
2. S. Baron and M. Spiliopoulou. Monitoring the Results of the KDD Process: An Overview of Pattern Evolution. In J.M. Meij, editor, Converting Data into Knowledge, chapter 5. The Netherlands Study Center for Technology Trends, Den Haag, Netherlands, to appear in Sep. 2001.
3. S. Chakrabarti, S. Sarawagi, and B. Dom. Mining Surprising Patterns Using Temporal Description Length. In VLDB’98, pages 606–617, New York, USA, Aug. 1998. Morgan Kaufmann.
4. X. Chen and I. Petrounias. Mining Temporal Features in Association Rules. In Proceedings of the 3rd European Conference on Principles of Data Mining and Knowledge Discovery, pages 295–300, Prague, Czech Republic, September 1999. Springer.
5. D.W. Cheung, S.D. Lee, and B. Kao. A General Incremental Technique for Maintaining Discovered Association Rules. In DASFAA’97, Melbourne, Australia, Apr. 1997.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献