Author:
Jiang Tao,Li Ming,Vitányi Paul
Publisher
Springer Berlin Heidelberg
Reference43 articles.
1. G. Barequet, A lower bound for Heilbronn’s triangle problem in d dimensions. In: Proc. 10th ACM-SIAM Symp. Discrete Algorithms, 1999, 76–81. 40, 41
2. A. Berthiaume, W. van Dam, S. Laplante, Quantum Kolmogorov complexity, Proc. 15th IEEE Computational Complexity Conference, 2000, 240–249. 37
3. J. Beck, Almost collinear triples among N points on the plane, in A Tribute to Paul Erdős, ed. A. Baker, B. Bollobas and A. Hajnal, Cambridge Univ. Press, 1990, pp. 39–57. 40
4. C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn’s problem, Proc. 3rd Ann. Conf. Comput. and Combinatorics, T. Jiang and D. T. Lee (Eds), 1997, pp. 23–31. 40
5. Lect Notes Comput Sci;H. Buhrman,1999