Author:
Höppner Frank,Klawonn Frank
Publisher
Springer Berlin Heidelberg
Reference11 articles.
1. R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence databases. In Proc. of the 4th Int. Conf. on Foundations of Data Organizations and Algorithms, pages 69–84, Chicago, 1993.
2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of association rules. In [7], chapter 12, pages 307–328. MIT Press, 1996.
3. J. F. Allen. Maintaing knowledge about temporal intervals. Comm. ACM, 26(11):832–843, 1983.
4. D. J. Berndt and J. Clifford. Finding patterns in time series: A dynamic programming approach. In [7], chapter 9, pages 229–248. MIT Press, 1996.
5. M. Berthold and D. J. Hand, editors. Intelligent Data Analysis. Springer, 1999.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Patterns of time-interval based patterns for improved multivariate time series data classification;Engineering Applications of Artificial Intelligence;2024-07
2. COSTI: a New Classifier for Sequences of Temporal Intervals;2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA);2022-10-13
3. Discovering predictive trend-event patterns in temporal clinical data;Proceedings of the 36th Annual ACM Symposium on Applied Computing;2021-03-22
4. SMILE: a feature-based temporal abstraction framework for event-interval sequence classification;Data Mining and Knowledge Discovery;2020-11-23
5. Z-Miner: An Efficient Method for Mining Frequent Arrangements of Event Intervals;Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining;2020-07-06