Advantages of petrosectomy for superficial temporal artery to superior cerebellar artery bypass based on three-dimensional distance measurements using cadaver heads

Author:

Uda KenjiORCID,Tanahashi Kuniaki,Mamiya Takashi,Kanamori Fumiaki,Yokoyama Kinya,Nishihori Masahiro,Izumi Takashi,Araki Yoshio,Saito Ryuta

Abstract

AbstractSuperficial temporal artery (STA) to superior cerebellar artery (SCA) bypass is usually performed via the subtemporal approach (StA), anterior transpetrosal approach (ApA), or combined petrosal approach (CpA), but no study has yet reported a quantitative comparison of the operative field size provided by each approach, and the optimal approach is unclear. The objective of this study is to establish evidence for selecting the approach by using cadaver heads to measure the three-dimensional distances that represent the operative field size for STA–SCA bypass. Ten sides of 10 cadaver heads were used to perform the four approaches: StA, ApA with and without zygomatic arch osteotomy (ApA-ZO and ApA-ZO+), and CpA. For each approach, the major-axis length and the minor-axis length at the anastomosis site (La-A and Li-A), the major-axis length and the minor-axis length at the brain surface (La-B and Li-B), the depth from the brain surface to the anastomosis site (Dp), and the operating angles of the major axis and the minor axis (OAa and OAi) were measured. Shallower Dp and wider operating angle were obtained in the order CpA, ApA-ZO+, ApA-ZO, and StA. In all parameters, ApA-ZO extended the operative field more than StA. ApA-ZO+ extended La-B and OAa more than ApA-ZO, whereas it did not contribute to Dp and OAi. CpA significantly decreased Dp, and widened OAa and OAi more than ApA-ZO+. ApA and CpA greatly expanded the operative field compared with StA. These results provide criteria for selecting the optimal approach for STA-SCA bypass in light of an individual surgeon’s anastomosis skill level.

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3