Pterional vs. lateral supraorbital approach in the management of middle cerebral artery aneurysms: insights from a phantom model study

Author:

Amini AmirORCID,Swiatek Vanessa M.ORCID,Stein Klaus-PeterORCID,Rashidi AliORCID,Sandalcioglu I. ErolORCID,Neyazi BelalORCID

Abstract

AbstractThe pterional approach has traditionally been employed for managing middle cerebral artery (MCA) aneurysms. With potential benefits like reduced surgical morbidity and improved postoperative recovery, the lateral supraorbital approach (LSO) should be considered individually based on aneurysm morphology, location and patient-specific variations of the MCA anatomy, which requires considerable technical expertise traditionally acquired through years of experience. The goal of this study was the development and evaluation of a novel phantom simulator in the context of clinical decision-making in the managmement of MCA aneurysms. For this purpose, high-fidelity simulators inclusive of MCA models with identical M1- and bifurcation aneurysms were manufactured employing 3D reconstruction techniques, additive manufacturing and rheological testings. Medical students, neurosurgical residents, and seasoned neurosurgeons (n = 22) tested and evaluated both approaches. Participants’ performances and progress over time were assessed based on objective metrics. The simulator received positive ratings in face and content validity, with mean scores of 4.9 out of 5, respectively. Objective evaluation demonstrated the model’s efficacy as a practical training tool, particularly among inexperienced participants. While requiring more technical expertise, results of the comparative analysis suggest that the LSO approach can improve clipping precision and outcome particularly in patients with shorter than average M1-segments. In conclusion, the employed methodology allowed a direct comparison of the pterional and LSO approaches, revealing comparable success rates via the LSO approach while reducing operation time and complication rate. Future research should aim to establish simulators in the context of clinical decision making.

Funder

Otto-von-Guericke-Universität Magdeburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3