Neuropathological interpretation of stimulated Raman histology images of brain and spine tumors: part B
-
Published:2021-12-10
Issue:
Volume:
Page:
-
ISSN:0344-5607
-
Container-title:Neurosurgical Review
-
language:en
-
Short-container-title:Neurosurg Rev
Author:
Straehle Jakob, Erny Daniel, Neidert Nicolas, Heiland Dieter Henrik, El Rahal Amir, Sacalean Vlad, Steybe David, Schmelzeisen Rainer, Vlachos Andreas, Mizaikoff Boris, Reinacher Peter Christoph, Coenen Volker Arnd, Prinz Marco, Beck Jürgen, Schnell OliverORCID
Abstract
Abstract
Intraoperative histopathological examinations are routinely performed to provide neurosurgeons with information about the entity of tumor tissue. Here, we quantified the neuropathological interpretability of stimulated Raman histology (SRH) acquired using a Raman laser imaging system in a routine clinical setting without any specialized training or prior experience. Stimulated Raman scattering microscopy was performed on 117 samples of pathological tissue from 73 cases of brain and spine tumor surgeries. A board-certified neuropathologist — novice in the interpretation of SRH — assessed image quality by scoring subjective tumor infiltration and stated a diagnosis based on the SRH images. The diagnostic accuracy was determined by comparison to frozen hematoxylin–eosin (H&E)-stained sections and the ground truth defined as the definitive neuropathological diagnosis. The overall SRH imaging quality was rated high with the detection of tumor cells classified as inconclusive in only 4.2% of all images. The accuracy of neuropathological diagnosis based on SRH images was 87.7% and was non-inferior to the current standard of fast frozen H&E-stained sections (87.3 vs. 88.9%, p = 0.783). We found a substantial diagnostic correlation between SRH-based neuropathological diagnosis and H&E-stained frozen sections (κ = 0.8). The interpretability of intraoperative SRH imaging was demonstrated to be equivalent to the current standard method of H&E-stained frozen sections. Further research using this label-free innovative alternative vs. conventional staining is required to determine to which extent SRH-based intraoperative decision-making can be streamlined in order to facilitate the advancement of surgical neurooncology.
Funder
Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Germany Else Kröner-Fresenius Foundation BMBF Nuovo-Soldati Foundation Berta-Ottenstein-Programme for advanced Clinician Scientists, Faculty of Medicine, University of Freiburg, Germany Universitätsklinikum Freiburg
Publisher
Springer Science and Business Media LLC
Subject
Clinical Neurology,General Medicine,Surgery
Reference26 articles.
1. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, Kratz A, Wefers AK, Huang K, Pajtler KW, Schweizer L, Stichel D, Olar A, Engel NW, Lindenberg K, Harter PN, Braczynski AK, Plate KH, Dohmen H, Garvalov BK, Coras R, Hölsken A, Hewer E, Bewerunge-Hudler M, Schick M, Fischer R, Beschorner R, Schittenhelm J, Staszewski O, Wani K, Varlet P, Pages M, Temming P, Lohmann D, Selt F, Witt H, Milde T, Witt O, Aronica E, Giangaspero F, Rushing E, Scheurlen W, Geisenberger C, Rodriguez FJ, Becker A, Preusser M, Haberler C, Bjerkvig R, Cryan J, Farrell M, Deckert M, Hench J, Frank S, Serrano J, Kannan K, Tsirigos A, Brück W, Hofer S, Brehmer S, Seiz-Rosenhagen M, Hänggi D, Hans V, Rozsnoki S, Hansford JR, Kohlhof P, Kristensen BW, Lechner M, Lopes B, Mawrin C, Ketter R, Kulozik A, Khatib Z, Heppner F, Koch A, Jouvet A, Keohane C, Mühleisen H, Mueller W, Pohl U, Prinz M, Benner A, Zapatka M, Gottardo NG, Driever PH, Kramm CM, Müller HL, Rutkowski S, von Hoff K, Frühwald MC, Gnekow A, Fleischhack G, Tippelt S, Calaminus G, Monoranu C-M, Perry A, Jones C, Jacques TS, Radlwimmer B, Gessi M, Pietsch T, Schramm J, Schackert G, Westphal M, Reifenberger G, Wesseling P, Weller M, Collins VP, Blümcke I, Bendszus M, Debus J, Huang A, Jabado N, Northcott PA, Paulus W, Gajjar A, Robinson GW, Taylor MD, Jaunmuktane Z, Ryzhova M, Platten M, Unterberg A, Wick W, Karajannis MA, Mittelbronn M, Acker T, Hartmann C, Aldape K, Schüller U, Buslei R, Lichter P, Kool M, Herold-Mende C, Ellison DW, Hasselblatt M, Snuderl M, Brandner S, Korshunov A, von Deimling A, Pfister SM (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474. https://doi.org/10.1038/nature26000 2. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20:37–46 3. Desroches J, Jermyn M, Mok K, Lemieux-Leduc C, Mercier J, St-Arnaud K, Urmey K, Guiot M-C, Marple E, Petrecca K (2015) Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. Biomed Opt Express 6:2380–2397 4. Eichberg DG, Shah AH, Di L, Semonche AM, Jimsheleishvili G, Luther EM, Sarkiss CA, Levi AD, Gultekin SH, Komotar RJ (2019) Stimulated Raman histology for rapid and accurate intraoperative diagnosis of CNS tumors: prospective blinded study. J Neurosurg 134:137–143 5. Fountain DM, Bryant A, Barone DG, Waqar M, Hart MG, Bulbeck H, Kernohan A, Watts C, Jenkinson MD (2021) Intraoperative imaging technology to maximise extent of resection for glioma: a network meta‐analysis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD013630.pub2
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|