Human Induced Pluripotent Stem Cells as a Disease Model System for Heart Failure

Author:

Deicher Anton,Seeger Timon

Abstract

Abstract Purpose of Review Heart failure is among the most prevalent disease complexes overall and is associated with high morbidity and mortality. The underlying aetiology is manifold including coronary artery disease, genetic alterations and mutations, viral infections, adverse immune responses, and cardiac toxicity. To date, no specific therapies have been developed despite notable efforts. This can especially be attributed to hurdles in translational research, mainly due to the lack of proficient models of heart failure limited translation of therapeutic approaches from bench to bedside. Recent Findings Human induced pluripotent stem cells (hiPSCs) are rising in popularity, granting the ability to divide infinitely, to hold human, patient-specific genome, and to differentiate into any human cell, including cardiomyocytes (hiPSC-CMs). This brings magnificent promise to cardiological research, providing the possibility to recapitulate cardiac diseases in a dish. Advances in yield, maturity, and in vivo resemblance due to straightforward, low-cost protocols, high-throughput approaches, and complex 3D cultures have made this tool widely applicable. In recent years, hiPSC-CMs have been used to model a wide variety of cardiac diseases, bringing along the possibility to not only elucidate molecular mechanisms but also to test novel therapeutic approaches in the dish. Summary Within the last decade, hiPSC-CMs have been exponentially employed to model heart failure. Constant advancements are aiming at improvements of differentiation protocols, hiPSC-CM maturity, and assays to elucidate molecular mechanisms and cellular functions. However, hiPSC-CMs are remaining relatively immature, and in vitro models can only partially recapitulate the complex interactions in vivo. Nevertheless, hiPSC-CMs have evolved as an essential model system in cardiovascular research.

Funder

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3