Analysis of SLAM-Based Lidar Data Quality Metrics for Geotechnical Underground Monitoring

Author:

Fahle LukasORCID,Holley Elizabeth A.,Walton Gabriel,Petruska Andrew J.,Brune Jurgen F.

Abstract

AbstractAdverse ground behavior events, such as convergence and ground falls, pose critical risks to underground mine safety and productivity. Today, monitoring of such failures is primarily conducted using legacy techniques with low spatial and temporal resolution while exposing workers to hazardous environments. This study assesses the potential of novel simultaneous localization and mapping (SLAM)-based light detection and ranging (Lidar) data quality for rapid, digital, and eventually autonomous mine-wide underground geotechnical monitoring. We derive a comprehensive suite of quality metrics based on tests in two underground mines for two state-of-the-art mobile laser scanning (MLS) systems. Our results provide evidence that SLAM-based MLS provides data of the quality required to detect geotechnically relevant changes while being significantly more efficient for large mine layouts when compared to traditional static systems. Additionally, we show that SLAM-specific processing can achieve an order of magnitude better relative accuracy relevant for change detection than quality metrics derived from traditionally deployed tests would suggest while reducing SLAM drift error by up to 90%. In collaboration with an operating block cave mine, we confirm these capabilities in field tests on a mine-wide scale and, for the first time, demonstrate methods of rockfall detection using MLS data. While more work is required to investigate optimal collection, processing, and utilization of MLS data, we demonstrate its potential to become an effective and widely applicable data source for rapid, accurate, and comprehensive geotechnical inspections.

Funder

National Institute for Occupational Safety and Health

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Geotechnical Engineering and Engineering Geology,General Chemistry,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3