The Value of Drilling—A Chance-Constrained Optimization Approach

Author:

Jeuken Rick,Forbes Michael

Abstract

AbstractManaging uncertainty is a core challenge in mine planning. Mine planners often represent various planning variables, such as equipment performance and geological parameters, as random variables due to inherent uncertainties. This paper looks at geological uncertainty and its impact on mine planning. Some traditional approaches to manage this uncertainty include using conditional simulations or mathematical programming in the planning process. Drilling additional holes, despite its cost, is a common method to reduce uncertainty using additional samples to reduce deposit variance. In this paper, we first outline an ore blending optimization model which uses chance-constrained programming to manage property limit risk when selecting the order of ore feed into a processing facility. In coal mining, in tactical planning horizons, the order of coal seam removal is usually predetermined, allowing a blending model to ensure optimal feed properties. Using chance-constrained programming allows us to blend the uncertainties from geological models to maximize plant output while adhering to property constraints. We use the chance-constrained blending model to determine the value of additional information from infill drilling. The model prioritizes drilling locations that reduce uncertainty and improve blending outcomes. A case study on a coking coal mine in Queensland, Australia, demonstrates the model’s application, highlighting significant improvements in blending by reducing the variance of high-quality blocks. The study concludes that targeting high-quality blocks for variance reduction can better accommodate lower-quality material, offering a more valuable approach than the traditional focus of reducing uncertainty in low-quality blocks. This approach provides insights for improving mine planning strategies and showcases the potential of chance constraints in optimizing ore blending under uncertainty.

Funder

The University of Queensland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3