Comparative Study of Hydrogen Reduction of Bauxite Residue-Calcium Sintered and Self-Hardened Pellets Followed by Magnetic Separation for Iron Recovery

Author:

Kar Manish Kumar,Hassanzadeh Ahmad,van der Eijk Casper,Safarian Jafar

Abstract

AbstractTo minimize the carbon footprint in the industrial valourization of bauxite residue, hydrogen was used as a reducing agent. The current study experimentally investigated hydrogen reduction of bauxite residue-CaO sintered and self-hardened pellets at 1000 °C, along with magnetic separation of these reduced pellets for iron recovery. Calcium was introduced to bauxite residue to form leachable calcium aluminate phases with the existing alumina in bauxite residue. This involved the addition of either CaCO3 or a mixture of CaO and CaCO3 while maintaining the fixed Ca content during pelletization. The former underwent sintering at 1150 °C, while the latter was self-hardened through the cementing effect of CaO in exposure to moisture and air. Both types of pellets were reduced in a thermogravimetry furnace at an elevated temperature under similar conditions. The pellets were characterized by the X-ray diffraction (XRD) method and scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), and their physical and mechanical properties were measured via standard techniques. During hydrogen reduction, a negligible amount of gehlenite (Ca2Al2SiO7) was formed in the self-hardened pellets, while this phase dominated in the sintered pellets. Alumina in the bauxite residue converted to mayenite phases during reduction in both the pellet types; however, reduced self-hardened pellets had a higher amount of alumina containing mayenite leachable phase. The two pellets showed similar reduction behaviour, while different chemical, physical, and mechanical properties were observed. The magnetic properties of milled reduced pellets were examined through a Davis Tube magnetic separator in a wet environment under a constant magnetic field of 800 G. Higher iron recovery was observed for the self-hardened reduced (41%) pellets than for the sintered pellets (27%).

Funder

H2020 European Research Council

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Geotechnical Engineering and Engineering Geology,General Chemistry,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3