Abstract
Abstract
Main conclusion
Hydroxy(phenyl)pyruvic acid reductase from Actaea racemosa catalyzes dual reactions in reducing 4-hydroxyphenylpyruvic acid as well as β-hydroxypyruvic acid. It thus qualifies to be part of fukinolic and cimicifugic acid biosynthesis and also photorespiration.
Abstract
The accumulation of fukinolic acid and cimicifugic acids is mainly restricted to Actaea racemosa (Ranunculaceae) and other species of the genus Actaea/Cimicifuga. Cimicifugic and fukinolic acids are composed of a hydroxycinnamic acid part esterified with a benzyltartaric acid moiety. The biosynthesis of the latter is unclear. We isolated cDNA encoding a hydroxy(phenyl)pyruvic acid reductase (GenBank OR393286) from suspension-cultured material of A. racemosa (ArH(P)PR) and expressed it in E. coli for protein production. The heterologously synthesized enzyme had a mass of 36.51 kDa and catalyzed the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvic acid to 4-hydroxyphenyllactic acid or β-hydroxypyruvic acid to glyceric acid, respectively. The optimal temperature was at 38 °C and the pH optimum at pH 7.5. NADPH is the preferred cosubstrate (Km 23 ± 4 µM). Several substrates are accepted by ArH(P)PR with β-hydroxypyruvic acid (Km 0.26 ± 0.12 mM) followed by 4-hydroxyphenylpyruvic acid (Km 1.13 ± 0.12 mM) as the best ones. Thus, ArH(P)PR has properties of β-hydroxypyruvic acid reductase (involved in photorespiration) as well as hydroxyphenylpyruvic acid reductase (possibly involved in benzyltartaric acid formation).
Funder
Philipps-Universität Marburg
Publisher
Springer Science and Business Media LLC