Organ-specific responses during acclimation of mycorrhizal and non-mycorrhizal tomato plants to a mild water stress reveal differential local and systemic hormonal and nutritional adjustments

Author:

Fresno David H.,Munné-Bosch SergiORCID

Abstract

Abstract Main conclusion Tomato plant acclimation to a mild water stress implied tissue-specific hormonal and nutrient adjustments, being the root one of the main modulators of this response. Abstract Phytohormones are key regulators of plant acclimation to water stress. However, it is not yet clear if these hormonal responses follow specific patterns depending on the plant tissue. In this study, we evaluated the organ-specific physiological and hormonal responses to a 14 day-long mild water stress in tomato plants (Solanum lycopersicum cv. Moneymaker) in the presence or absence of the arbuscular mycorrhizal fungus Rhizoglomus irregulare, a frequently used microorganism in agriculture. Several physiological, production, and nutritional parameters were evaluated throughout the experiments. Additionally, endogenous hormone levels in roots, leaves, and fruits at different developmental stages were quantified by ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC–MS/MS). Water deficit drastically reduced shoot growth, while it did not affect fruit production. In contrast, fruit production was enhanced by mycorrhization regardless of the water treatment. The main tissue affected by water stress was the root system, where huge rearrangements in different nutrients and stress-related and growth hormones took place. Abscisic acid content increased in every tissue and fruit developmental stage, suggesting a systemic response to drought. On the other hand, jasmonate and cytokinin levels were generally reduced upon water stress, although this response was dependent on the tissue and the hormonal form. Finally, mycorrhization improved plant nutritional status content of certain macro and microelements, specially at the roots and ripe fruits, while it affected jasmonate response in the roots. Altogether, our results suggest a complex response to drought that consists in systemic and local combined hormonal and nutrient responses.

Funder

Generalitat de Catalunya

Universitat de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3