Abstract
Abstract
Main conclusion
Phenological isolation can potentially reduce seed output and may be exploited as a novel tool for ecological management of dioecious weeds.
Abstract
Dioecious plants may benefit from a maximized outcrossing and optimal sex-specific resource allocation; however, this breeding system may also be exploited for weed management. Seed production in dioecious species is contingent upon the co-occurrence and co-flowering of the two genders and can be further disturbed by flowering asynchrony. We explored dimorphism in secondary sex characters in Amaranthus palmeri, and tested if reproductive synchrony can be affected by water stress. We have used seeds of A. palmeri from California, Kansas and Texas, and studied secondary sex characters under natural conditions and in response to water stress. Seeds of A. palmeri from California (CA) and Kansas (KS) were cordially provided by Dr. Anil Shrestha (California State University, Fresno, California) and Dr. Dallas E. Peterson (Kansas State University, Manhattan, Kansas), respectively. Seeds of a third population were collected from mature plants (about 30 plants) from a set-aside field in College Station, Texas. A. palmeri showed no sexual dimorphism with regard to the timing of emergence, plant height, and relative growth rate. While the initiation of flowering occurred earlier in males than females, females preceded males in timing of anthesis. Water stress delayed anthesis in males to a greater extent than females increasing the anthesis mismatch between the two sexes by seven days. Our data provide the first evidence of environment-controlled flowering asynchrony in A. palmeri. From a practical point of view, phenological isolation can potentially reduce seed output and may be exploited as a novel tool for ecological management of dioecious weeds.
Funder
national institute of food and agriculture
University of California, Davis
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献