Abstract
Abstract
Main Conclusion
The characteristics of sorghum anthers at 18 classified developmental stages provide an important reference for future studies on sorghum reproductive biology and abiotic stress tolerance of sorghum pollen.
Abstract
Sorghum (Sorghum bicolor L. Moench) is the fifth-most important cereal crop in the world. It has relatively high resilience to drought and high temperature stresses during vegetative growing stages comparing to other major cereal crops. However, like other cereal crops, the sensitivity of male organ to heat and drought can severely depress sorghum yield due to reduced fertility and pollination efficiency if the stress occurs at the reproductive stage. Identification of the most vulnerable stages and the genes and genetic networks that differentially regulate the abiotic stress responses during anther development are two critical prerequisites for targeted molecular trait selection and for enhanced environmentally resilient sorghum in breeding using a variety of genetic modification strategies. However, in sorghum, anther developmental stages have not been determined. The distinctive cellular characteristics associated with anther development have not been well examined. Lack of such critical information is a major obstacle in the studies of anther and pollen development in sorghum. In this study, we examined the morphological changes of sorghum anthers at cellular level during entire male organ development processes using a modified high-throughput imaging variable pressure scanning electron microscopy and traditional light microscopy methods. We divided sorghum anther development into 18 distinctive stages and provided detailed description of the morphological changes in sorghum anthers for each stage. The findings of this study will serve as an important reference for future studies focusing on sorghum physiology, reproductive biology, genetics, and genomics.
Funder
Agricultural Research Service
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献