Theoretical considerations regarding the functional anatomical traits of primary and secondary xylem in dragon tree trunk using the example of Dracaena draco

Author:

Tulik MirelaORCID,Wojtan RafałORCID,Jura-Morawiec JoannaORCID

Abstract

Abstract Main conclusion In Dracaena draco trunks, the primary and secondary xylem conduits co-function. Both are resistant to embolism; however, secondary conduits are mainly involved in mechanical support. Abstract Monocotyledonous dragon trees (Dracaena spp., Asparagaceae) possess in their trunks both primary and secondary xylem elements, organized into vascular bundles, that for dozens of years co-function and enable the plant to transport water efficiently as well as provide mechanical support. Here, based on the modified Hagen-Poiseuille’s formula, we examined the functional anatomical xylem traits of the trunk in two young D. draco individuals to compare their function in both primary and secondary growth. We provided analyses of the: (i) conduits surface sculpture and their cell walls thickness, (ii) conduit diameter and frequency, (iii) hydraulically weighted diameter, (iv) theoretical hydraulic conductivity, (v) area-weighted mean conduit diameter, as well as (vi) vulnerability index. The conduits in primary growth, located in the central part of the trunk, were loosely arranged, had thinner cell walls, larger mean hydraulically weighted diameter, and significantly larger value of the theoretical hydraulic conductivity than conduits in secondary growth, which form a rigid cylinder near the trunk surface. Based on the vulnerability index, both primary and secondary conduits are resistant to embolism. Taking into account the distribution within a trunk, the secondary growth conduits seems to be mainly involved in mechanical support as they are twisted, form structures similar to sailing ropes and have thick cell walls, and a peripheral localization. D. draco has been adapted to an environment with water deficit by distinctive, spatial separation of the xylem elements fulfilling supportive and conductive functions.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3