Gaseous environment modulates volatile emission and viability loss during seed artificial ageing

Author:

Han Biao,Fernandez Vincent,Pritchard Hugh W.,Colville LouiseORCID

Abstract

Abstract Main conclusion Modulation of the gaseous environment using oxygen absorbers and/or silica gel shows potential for enhancing seed longevity through trapping toxic volatiles emitted by seeds during artificial ageing. Abstract Volatile profiling using non-invasive gas chromatography–mass spectrometry provides insight into the specific processes occurring during seed ageing. Production of alcohols, aldehydes and ketones, derived from processes such as alcoholic fermentation, lipid peroxidation and Maillard reactions, are known to be dependent on storage temperature and relative humidity, but little is known about the potential modulating role of the gaseous environment, which also affects seed lifespan, on volatile production. Seeds of Lolium perenne (Poaceae), Agrostemma githago (Caryophyllaceae) and Pisum sativum (Fabaceae) were aged under normal atmospheric oxygen conditions and in sealed vials containing either oxygen absorbers, oxygen absorbers and silica gel (equilibrated at 60% RH), or silica gel alone. Seeds of A. githago that were aged in the absence of oxygen maintained higher viability and produced fewer volatiles than seeds aged in air. In addition, seeds of A. githago and L. perenne aged in the presence of silica gel were longer lived than those aged without silica, with no effect on seed moisture content or oxygen concentration in the storage containers, but with silica gel acting as a volatile trap. These results indicate that the use of inexpensive oxygen absorbers and silica gel could improve seed longevity in storage for some species and suggests a potential, and previously unidentified, role for silica gel in ultra-dry storage.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3