Ozone uptake at night is more damaging to plants than equivalent day-time flux

Author:

Goumenaki EleniORCID,González-Fernández Ignacio,Barnes Jeremy D.

Abstract

Abstract Main conclusion Plants exposed to equivalent ozone fluxes administered during day-time versus night-time exhibited greater losses in biomass at night and this finding is attributed to night-time depletion of cell wall-localised ascorbate. Abstract The present study employed Lactuca sativa and its closest wild relative, L. serriola, to explore the relative sensitivity of plants to ozone-induced oxidative stress during day-time versus night-time. By controlling atmospheric ozone concentration and measuring stomatal conductance, equivalent ozone uptake into leaves was engineered during day and night, and consequences on productivity and net CO2 assimilation rate were determined. Biomass losses attributable to ozone were significantly greater when an equivalent dose of ozone was taken-up by foliage at night compared to the day. Linkages between ozone impacts and ascorbic acid (AA) content, redox status and cellular compartmentation were probed in both species. Leaf AA pools were depleted by exposure of plants to darkness, and then AA levels in the apoplast and symplast were monitored on subsequent transfer of plants to the light. Apoplast AA appeared to be more affected by light–dark transition than the symplast pool. Moreover, equivalent ozone fluxes administered to leaves with contrasting AA levels resulted in contrasting effects on the light-saturated rate of CO2 assimilation (Asat) in both species. Once apoplast AA content recovered to pre-treatment levels, the same ozone flux resulted in no impacts on Asat. The results of the present investigation reveal that plants are significantly more sensitive to equivalent ozone fluxes taken-up at night compared with those during the day and were consistent with diel shifts in apoplast AA content and/or redox status. Furthermore, findings suggest that some thought should be given to weighing regional models of ozone impacts for extraordinary night-time ozone impacts.

Funder

Newcastle University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3